329 research outputs found

    The microRNA-29 family in cartilage homeostasis and osteoarthritis

    Get PDF
    MicroRNAs have been shown to function in cartilage development and homeostasis, as well as in progression of osteoarthritis. The objective of the current study was to identify microRNAs involved in the onset or early progression of osteoarthritis and characterise their function in chondrocytes. MicroRNA expression in mouse knee joints post-DMM surgery was measured over 7 days. Expression of miR-29b-3p was increased at day 1 and regulated in the opposite direction to its potential targets. In a mouse model of cartilage injury and in end-stage human OA cartilage, the miR-29 family were also regulated. SOX9 repressed expression of miR-29a-3p and miR-29b-3p via the 29a/b1 promoter. TGFÎČ1 decreased expression of miR-29a, b and c (3p) in primary chondrocytes, whilst IL-1ÎČ increased (but LPS decreased) their expression. The miR-29 family negatively regulated Smad, NFÎșB and canonical WNT signalling pathways. Expression profiles revealed regulation of new WNT-related genes. Amongst these, FZD3, FZD5, DVL3, FRAT2, CK2A2 were validated as direct targets of the miR-29 family. These data identify the miR-29 family as microRNAs acting across development and progression of OA. They are regulated by factors which are important in OA and impact on relevant signalling pathways

    Evidence for handheld electronic medical records in improving care: a systematic review

    Get PDF
    BACKGROUND: Handheld electronic medical records are expected to improve physician performance and patient care. To confirm this, we performed a systematic review of the evidence assessing the effects of handheld electronic medical records on clinical care. METHODS: To conduct the systematic review, we searched MEDLINE, EMBASE, CINAHL, and the Cochrane library from 1966 through September 2005. We included randomized controlled trials that evaluated effects on practitioner performance or patient outcomes of handheld electronic medical records compared to either paper medical records or desktop electronic medical records. Two reviewers independently reviewed citations, assessed full text articles and abstracted data from the studies. RESULTS: Two studies met our inclusion criteria. No other randomized controlled studies or non-randomized controlled trials were found that met our inclusion criteria. Both studies were methodologically strong. The studies examined changes in documentation in orthopedic patients with handheld electronic medical records compared to paper charts, and both found an increase in documentation. Other effects noted with handheld electronic medical records were an increase in time to document and an increase in wrong or redundant diagnoses. CONCLUSION: Handheld electronic medical records may improve documentation, but as yet, the number of studies is small and the data is restricted to one group of patients and a small group of practitioners. Further study is required to determine the benefits with handheld electronic medical records especially in assessing clinical outcomes

    Assessing hospitals' clinical risk management: Development of a monitoring instrument

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Clinical risk management (CRM) plays a crucial role in enabling hospitals to identify, contain, and manage risks related to patient safety. So far, no instruments are available to measure and monitor the level of implementation of CRM. Therefore, our objective was to develop an instrument for assessing CRM in hospitals.</p> <p>Methods</p> <p>The instrument was developed based on a literature review, which identified key elements of CRM. These elements were then discussed with a panel of patient safety experts. A theoretical model was used to describe the level to which CRM elements have been implemented within the organization. Interviews with CRM practitioners and a pilot evaluation were conducted to revise the instrument. The first nationwide application of the instrument (138 participating Swiss hospitals) was complemented by in-depth interviews with 25 CRM practitioners in selected hospitals, for validation purposes.</p> <p>Results</p> <p>The monitoring instrument consists of 28 main questions organized in three sections: 1) Implementation and organizational integration of CRM, 2) Strategic objectives and operational implementation of CRM at hospital level, and 3) Overview of CRM in different services. The instrument is available in four languages (English, German, French, and Italian). It allows hospitals to gather comprehensive and systematic data on their CRM practice and to identify areas for further improvement.</p> <p>Conclusions</p> <p>We have developed an instrument for assessing development stages of CRM in hospitals that should be feasible for a continuous monitoring of developments in this important area of patient safety.</p

    Risk factors in patient safety: minimally invasive surgery versus conventional surgery

    Get PDF
    Background This study aimed to identify the frequency of events in the different patient safety risk domains during minimally invasive surgery (MIS) and conventional surgery (CS). Methods A convenience sample of gynecologic MIS and CS was observed. Events were observed and categorized into one of the predefined patient safety risk domains. Results A total of 53 procedures were observed: 26 CS and 27 MIS procedures. The general characteristics were comparable between the two groups. A large number of environmental events were observed, averaging one every 2.5 min. Technical events and events of an organizational nature occurred more often in MIS (P < 0.01) than in CS (P < 0.01). The relative risk for the occurrence of one or more technical events in MIS compared with CS was 1.7, and the risk for two or more technical events was 4.1. A time out according to protocol showed no relationship to the occurrence of the different types of patient safety-related events. Conclusion The technological complexity inherent in MIS makes this type of surgery more prone to technology-related problems than CS, even in a specially designed minimally invasive surgical suite. A regular time-out procedure developed for CS lacks the attention necessary for the complex technology used in MIS and therefore is insufficient for MIS procedures briefing. Incorporating a specially designed technology checklist in a regular briefing protocol could be a solution to decrease the number of events in MIS.Biomechanical EngineeringMechanical, Maritime and Materials Engineerin

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 ÎŒm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio
    • 

    corecore